
Reactive
Model-based Programming

of Embedded Systems

Prof. Brian C. Williams
Dept. of Aeronautics and Astronautics

Space Systems and Artificial Intelligence Labs
MIT

SDP Panel, December 13th, 2001

Space Systems & Artificial Intelligence Laboratories Massachusetts Institute of Technology

Observations: VLSI circa 1979
VLSI designers aren’t good at reasoning through

complex physical interactions:

Solution:
• Simplifying abstractions
• Design rules
• Design rule verifiers
• Silicon compilers

Space Systems & Artificial Intelligence Laboratories Massachusetts Institute of Technology

Observations: Embedded SW, 2001

Space Systems & Artificial Intelligence Laboratories Massachusetts Institute of Technology

Obs: Embedded Flight Software
Programmers of embedded systems:
• Aren’t good at reasoning through complex

physical interactions.
(Mars Polar Lander, test stand and sw monitor failure).

• Aren’t good at anticipating all novel interactions
with the environment.
(Deep Space One, star tracker).

• Rarely have time to add in fault protection layers.
(Mars Polar Lander and Climate Orbiters).

ØEmbedded languages should do this for you.

Space Systems & Artificial Intelligence Laboratories Massachusetts Institute of Technology

Thesis: Model-based Programming
Embedded programs should:
• include models of the physical plant.
• reason through plant interactions for you.
• reveal their reasoning at compile time for analysis.
• reason on the fly to handle unanticipated

circumstances.
• reason on the fly to optimize performance to the

situation.
We should fold extensive reasoning into
our interpreters and compilers

Reactive Model-based
Programming Language, v 1.0

Embedded programs interact with
plant sensors and actuators:

• Read sensors

• Set actuators

Embedded Program

S
Plant

Obs Cntrl

Programmer must map between
state, sensors, and actuators.

Model-based programs
interact with plant state:

• Read state

• Write state

Model-based
Embedded Program

S
Plant

Model-based executive maps
between state and sensors/actuators.

S’
Model-based Executive

Obs Cntrl

Requires: Propositional SAT engine in reactive loop

Space Systems & Artificial Intelligence Laboratories Massachusetts Institute of Technology

X

X

X
X

X

X

X
X

X

X X

X

possible target
identified target exclusion zones

exploration regionpath planned/taken
objective

DOD: On To Cooperative Systems

Reactive Model-based
Programming Language, v 2.0

Requires: hierarchical planning and scheduling in reactive loop

• Cooperative Programs
• Specify team behaviors as concurrent embedded programs.

• Introduce redundant options with decision theoretic choice.

• Introduce timing requirements between activities.

• Model-based Executive
• Plans and schedules options at the scale of seconds.

• Continuously searches for optimal plans

• Monitors execution and replans.

Reactive Model-based
Programming Language, v 3.0

Requires: kino-dynamic path planning and mixed integer/linear
programming with in the reactive loop

• Cooperative Programs
• include goal destinations and flight dynamics

• Model-based Executive
• plans trajectories and detailed control actions.

x x d

x x d

y y d

y y d

ip iq

iq ip

ip iq

iq ip

− ≥

− ≥

− ≥

− ≥

or

or

or X

Y

d AB

Space Systems & Artificial Intelligence Laboratories Massachusetts Institute of Technology

Embedded systems need to
anticipate the seemingly unlikely

Reactive Model-based
Programming Language, v N.0

Requires: hybrid mode estimation, model checking, Bayesian
inference…with in the reactive loop

• Model-based Programs
• same as before

• Model-based Executive
• tracks unlikely system trajectories.

• extracts statistically significant trends from noise.

• checks future safety of most likely trajectories.

• validates plans against likely failures.

• plans contingencies and prepares for them.

S T

X0 X1 XN-1 XN

S T

Space Systems & Artificial Intelligence Laboratories Massachusetts Institute of Technology

Summary: Embedded Flight Software
Programmers of embedded systems:
• Don’t like reasoning through interactions and

failure.
ØEmbedded languages should do this for you.

We should fold extensive reasoning into
our online interpreters and compilers

